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Abstract

Current calibration of the PTW strength model for beryllium is accomplished
using fits to Hopkinson bar experiments. Unfortunately, Hopkinson bar tests
on beryllium only allow for strain-rates of up to 5 ∗ 103 s−1. It has been shown
previously that, in higher strain-rate experiments such as flyer-plate impact
tests, this calibrated strength model causes simulations with beryllium to diverge
from the observed response. In this work we use a particle swarm optimization
algorithm to arrive at a better calibration of beryllium strength through fits to
observed material responses during flyer-plate impact experiments. We show
that the PTW strength model for beryllium can be tuned to provide a much
better fit to flyer-plate responses. To mitigate the effect of this new calibration
on fits to Hopkinson bar data we calibrate to flyer-plate impact data using only
parameters within the medium strain-rate regime of the PTW model.
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1 Calibrating Constitutive Models Using High Im-
pact Velocity Data

1.1 Introduction

Materials scientists at Los Alamos National Laboratory (LANL) validate physics
models for materials. This is to test whether the model form sufficiently approximates
the true behavior, when subjected to high-velocity impacts. The Preston-Tonks-
Wallace (PTW) strength model relates a material’s plastic deformation response, or
its stress, to mechanical loading, or strain, in explosive loading scenarios. LANL
would like to validate our calibrated PTW model across higher strain rate regimes.
However, we currently have access to experimental data in a small range of regimes.

The PTW strength model is unlike most strength models because it has the
ability to transitions between strain rate regimes. Many LANL researchers have taken
different approaches to calibrate PTW at lower strain rates using Hopkinson bar
and Quasi-Static experiments, their parameterizations agree at low strain rates, but
diverge when extrapolated to higher strain rates.

Flyer-plate impact experiments allow the material being studied to be put under
higher strain rates than found in Hopkinson bar and Quasi-Static experiments. These
experiments measure the free surface velocity of a target material when struck
forcefully by an impactor, subjecting the target to higher strain rates. Currently
our calibrations to PTW fits poorly to flyer-plate data. Using multi-physics code
developed at LANL to simulate the free surface velocity of targets struck in flyer-plate
experiments, we can tune the parameters on the PTW strength model for Beryllium
in these regimes to get better fits.

One complication with using flyer-plate data is the inability to measure strength
directly, this allows for direct calibration of strength models. Due to the higher
strain-rate impacts in flyer-plate experiments such a direct measurement is impossible.
Though we cannot extract stress/strain data from flyer-plate experiments we can use
the comparison between experimental and simulated free surface velocity to calibrate
the strength model used in our calculation. We reduce the dimension of the parameter
space by considering parameters in the PTW yield stress equation corresponding to
strain rates from 104 − 106 s−1, which are exercised in flyer impact tests. This has
the advantage of reducing the effect of calibration to flyer-plate response on previous
calibration to Hopkinson bar and Quasi-static data.

The reduced parameter space is traversed using a Particle Swarm Optimization
algorithm (PSO), specifically the Gravitational Search Algorithm (GSA). In this
report we show that the GSA allows us to reach an improved calibration of beryllium
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strength to flyer-plate response while keeping its original fit to low strain rate data.
The overall explanation of our experiment is explained in section 1.2

1.2 Experiment

Our current PTW strength model is calibrated to predicts the yield and saturation
strength of a material for strain rates over 10−3 − 104 s−1. From this, we can relate
the strain applied to a material at a given pressure and temperature to its equivalent
plastic stress. In order to calibrate our model to higher regimes we needed to gather
stress/strain data across a range of strain rates, and compare the models current
predictions to real data.

Obtaining measurements of stress in high-velocity experiments is done to study
impact related problems. As previously stated this is impossible at strain-rates above
104 s−1, which is well below the regime that flyer-plate experiments fall into. To
mitigate this complication, velocimetry data from flyer-plate experiments act as an
indirect means to calibrate the stress predictions of the PTW model.

An overview of the flyer-plate experiment is as follows; two plates are positioned
in a near-vacuum inside a gun barrel. Explosives detonated behind the flyer plate
launching it down the barrel towards the stationary target plate.

In such a high-speed impact experiment the impactors velocity is measured using
radial shorting pins that are placed in the barrel before the point of impact. Piezo-
electric pins fixed flush with the target face record the time of impact and the tilt of
the impactor plate. A single VISAR probe directed at the face of the target collects
the velocity measurement as the shockwave propagates through the target.

The speed of impact can reach anywhere from 105 to 109 m/s. As the impactor
meets the target, the shock wave propagates through the target and forces it to first
elastically then plastically deform. The propagation of particle velocity through the
target over time is then recorded and used as experimental data.

In this work, we optimize the PTW yield stress parameters to calibrate the model
for higher yield stress regimes. A brief literary review relating to the effect of yield
stress at higher regimes will be reviewed in the next section. This review will be
concerned particularly with the effect of optimizing the PTW yield stress parameter,
the PTW strength and spall properties, and validating beryllium strength models.

1.3 Data

The data used in our study came from four flyer-plate experiments performed to
examine the strength and damage behavior of S200F beryllium. There setup is as
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follows: [1] [2]:

1. Performed on S-200F beryllium, vacuum hot-pressed from powder.

2. Impurity level below 1%.

3. Grain size about 11 µm. Specimens were machined such that the samples were
loaded along the hot-pressing axis.

4. Texture in such samples has been modest at 2 or fewer multiples of random
distribution.

The four types of experiments/shots that we had data on are shown in table 1

Flyer plate experiments
Shot/Experiment
Name

Flyer Impactor Initial Velocity
(µ)

Shot 55− 429 Beryllium Beryllium 0.071
Shot 55− 430 Beryllium Beryllium 0.1246
Shot 55− 432 Sapphire Beryllium 0.0654
Shot 55− 433 Tantalum Beryllium 0.1418
Shot 55− 436∗ Quartz Beryllium 0.02546

Table 1: Beryllium flyer-plate impact experiments. (∗ Shot 55− 436 included a Li-F
window.) [3]

1.4 Literature

In this section we offer a brief literature review of modeling high strain-rate plastic
deformation in metals. This is a vast field of research with a long history so we do
not pretend that this review is exhaustive, instead we hope to offer the reader insight
into the path that we have taken through the literature.

Adams et al. [3] detail the experimental setup and data collection processes of
a series of flyer-plate impact experiments performed with beryllium targets. The
experiments were performed in order to study strength and spall properties of S200F
grade beryllium. Much work has been done on understanding the dynamic behavior
of S200D or S200E grades, and less on the more pure and compact S200F grade. Two
experiments used beryllium for both the impactor and target materials. Two other
experiments in the paper were asymmetric, using alternately a sapphire and tantalum
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impactor. Peak stresses were 5.56 and 10.20GPa for the two symmetric experiments
and 7.66 and 19.25GPa for the sapphire and tantalum experiments. Across these
four experiments, impact velocity ranged from 0.654 to 1.418 mm

µs
. The data generated

from [3] is the same data that is used in our experiments.
The paper from Preston, Tonks, and Wallace [4] provides details for the PTW

strength model. This model will be explained in more detail in section 2. Unlike many
strength models available the PTW model allows attempts to model a material’s
strength over a very large range of temperatures, densities, strains, and strain-rates.
In this technical report our primary goal is to calibrate a PTW model of beryllium
strength for strain-rates involved in flyer-plate impact experiments.

Prime, Adams, and Chen [1] give an overview of two strength models used to
model beryllium flyer-plate shock data collected at Technical Area 55 (TA-55) at
LANL. The shock data consists of six velocity wave profiles from shot pressures
ranging from 20− 200 kbar. First, they compare previous calibrations of Mechanical
Threshold Stress (MTS) and PTW models. The paper argues that both strength
models calibrations deviate from observed data during extrapolation to higher strain
rate regimes. They then compare MTS and PTW fits to the six beryllium shocks
with different pressures and experimental setups (impactor material, windowing, etc.).
They found that though MTS and PTW had similar performance when calibrated
to lower strain data when extrapolated to flyer-plate data at higher strain-rates the
models gave significantly different predictions.

Armstrong [5] surveys the work done on validating beryllium strength models, using
Hopkinson bar and quasi-static data for calibration and flyer plate data for validation.
He sets up the underlying problem that gave rise to the current research question.
That is, many calibrations of PTW models agree in modeling lower strain Hopkinson
bar data but diverge significantly when extrapolated to high strain. Armstrong
concludes that a PTW model calibrated by Chen provides the best agreement to flyer
plate data. While these settings might be, therefore, the defensible defaults, we take
a different, and comparable, model from Armstrong’s survey as default values for
parameters in our PTW model.

Swegle and Grady [6] discuss the interplay of strength and viscosity properties
of materials when simulating shocks. The use of artificial viscosity addresses the
numerical issue of modeling a discontinuous shock by smoothing the shock into a
transition over multiple mesh regions. The artificial viscosity may justifiably represent
the material’s viscous behavior, but it also can drive erroneous solutions, as the shock
rise time depends on the zone size and viscosity, so the model may be quite sensitive
to these elements. They also make a clear association between strength and the slope
of the hardening curve, the latter we extract from our simulations to track sensitivity

6



to strength parameters.
We use a type of Particle Swarm Optimizer (PSO) called a gravitational search

algorithm to traverse and optimize parameter vectors in the PTW parameter space.
The PSO was first introduced in [7] for the training of artificial neural network weights
inside of a perceptron. Thirteen years later an adaptation called the Gravitational
Search Algorithm [8] was created that emulates Newtonian physics to allow for a
heuristic convergence of a cost function.

Using the GSA as an optimizer for our parameter space, along side consultation
from Subject Matter Experts (SME). After optimizing the parameter space and
we used the data from the GSA to preform a convergence study to find a value
that allowed us to better fit the simulation data to the experimental data. The
methodology of the overall experiment is explained in more detail in section 2.
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2 Methodology

2.1 Scope of Analysis

Our current PTW model for Beryllium was calibrated using low strain rate Hopkinson
bar and quasi-static data alongside high strain rate Flyer-plate data. The reason
why we used flyer-plate data is to better fit the PTW model at higher strain rates.
This allows us to optimize a subset of the parameters governing the PTW plastic
deformation model. These parameters can be optimized to better fit the PTW model
at higher strain rates, without affecting its fit to lower strain rate data.

In order to narrow the scope of our analysis, we isolated effects attributable to
particular changes in the PTW model. Many aspects of the simulation have coupled
effects that are difficult to distinguish from other modeling choices. For example,
both the strength model and the equation of state (EOS) affect the simulation’s fit
to flyer-plate data. Therefore, calibration of one depends on the initial choice for the
other.

Additionally, if multiple materials are involved in an experiment and its corre-
sponding simulation, the parameterization of one material’s strength model might
add an unwanted level of uncertainty into the overall simulation. An example of this
would be hitting a Be plate with an impactor plate that is as soft as clay, thus eliciting
a weaker response from the Be target. On the other hand, if a Be plate were struck
with an impactor set to be as hard as diamond, it would elicit a stronger response.
Also, different models come into play at different points along with the wave profile.
Our experimental data and simulation capture the target plate’s velocity for the full
duration of the shock, which includes not only elastic and plastic deformation but
reverse yielding and spall as well.

To mitigate these coupled effects, we used data from the homogeneous experiments
with fixed parameters in the simulation for the flyer and impactor. First, while we had
data from experiments using sapphire and tantalum impactors, we began our analysis
with the experiments that used Be for both impactor and target (shot 55− 429 and
55−430) in Section 1.2, Table 1. These two experiments differ in their impactor/target
width and impact velocities but have only one material, beryllium. Thus, for these
simulations, we knew our calibration would be independent of modeling choices
for other materials made outside the scope of our study since no other materials
were involved. However, we did not limit our work to just the Be/Be shots, and
incorporated multi-material impactor data, but did not fully explore the complicating
effects of tantalum and sapphire modeling choices. We leave decoupling material
model choices to future work.
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Next, we calibrated the simulation to its fit, using a subset of the experimental
data that was sensitive to strength. Strength has the greatest effect on the slope of
the plastic rise. The steeper the slope the weaker the material is made, and shallower
makes the material stronger. Therefore, we calculated the root mean squared error
(RMSE) between the experimental data and simulation from zero seconds to the
time at which the target reaches its peak velocity, a time unique to each shot. The
reverberations in the velocity past the peak are sensitive to the damage, rather than
strength, model, so including that region in the RMSE calculation would mean we
were calibrating to features strength should not influence on.

Finally, we fixed both the EOS and damage models for our calibrations. We used
a sesame table with no damage model for all simulations. This choice ensured that we
could attribute the effects we saw to changes in the PTW strength model, interactions
between these models should be examined, however we leave this decoupling for future
work.

Most importantly, PTW’s model form significantly narrowed the scope of our
parameter calibration. While the PTW model has 11 parameters, we examined
only two. This particular plastic deformation model is designed to be valid over a
range of input conditions, which include strain, strain rate, and temperature. Due
to the variations in experimental samples, measurement variation, as well as slight
inadequacies in the model, no single parameter setting gives a good match to all of
the experimental data for a given material.

The variables in the PTW Equation are as shown in table 2 and table 3:

Parameters
Parameter Description Default Values
θ0 Initial strain hardening rate 0.0394
p Constant modifying Voce hardening law 2
S0 Maximum saturation stress (at 0K) 0.0077
S Minimum saturation stress (melting) 0.0006

Table 2: PTW parameters
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Parameters
Parameter Description Default Values
κ Thermal activation energy term relating

to temperature
0.145

ψ Thermal activation energy term relating
to strain-rate

1.0′10−6

y0 Maximum yield stress (at 0K) 0.0018
yinf Minimum yield stress melting) 0.0004
y1 Scaling parameter for medium strain-

rate regime
0.0077

y2 Exponential parameter for medium
strain-rate regime

0.16

β Material constant used in describing the
high rate sensitivity in 2nd regime

0.16

Tm Melting temperature 1557 K
G0 Shear modulus (at 0K) 152.4 109 N/m2
α Constant in G(T) Equation 0.23
CV Heat Capacity 1820 J/Kg/K
A Atomic weight 1.447′10−26

Kg/atom
p Density 1848 Kg/m3

Table 3: PTW parameters

2.2 PTW parameter selection

The PTW yield stress equation is:

τ̂y = max{y0 − (y0 − y∞) ∗ Ferror(κT̂ ln(γξ̇/ψ̇)),min{y1(ψ̇/γξ̇)y2 , s0(ψ̇/γξ̇)β} (1)

which can be simplified to:

τ̂y = max{τ̂Ly ,min{τ̂My , τ̂Hy } (2)

We focused on this equation and its parameters rather than both it and the PTW
saturation stress equation. This decision was made because strains in flyer-plate
experiments are not high enough to cause the material to reach its saturation stress,
this range can only affect the yield stress.

Next, of the 11 parameters in the equation above, we hypothesize that only a
small subset will affect the fits to flyer-plate data. τ̂Ly should be exercised at strain
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rates reached by Hopkinson bar and quasi-static data, which are lower rates than
flyer-plates reach. Therefore, changing τ̂Ly parameters should not affect the fit to
flyer-plate data. In contrast, τ̂My is exercised at the strain rates flyer-plates reach,
so perturbing its parameters should affect how strongly beryllium is modeled at
these higher strain rates, and therefore the simulation fit to flyer-plate data. As a
bonus, because Hopkinson bar and quasi-static experiments do not reach strain rates
corresponding to τ̂My , perturbing its parameters should not affect how strong Be is
modeled at their lower strain rates, and thus not affect simulation fit to Hopkinson bar
and quasi-static data. We must confirm this hypothesis in future work, because the
distinction between τ̂Ly and τ̂My may not be as defined as described above; flyer-plate
experiments exercise a range of strain rates, some of which may stray into the τ̂Ly
regime, and the reverse with Hopkinson bar and quasi-static experiments extending
into the τ̂My regime.

Assuming flyer-plates correspond to τ̂My yield stresses, we then have five parameters
to examine: y1,ψ̇, γ, ξ̇, and y2. We will only examine y1 and y2. First, ψ̇ is the
independent variable, strain rate, and ξ̇ is not a model parameter and is a function of
other physical quantities. Next, while γ is a model parameter, it is present in both
τ̂Ly and τ̂My , so changing it would affect the fit in both the τ̂Ly and τ̂My strain rate
regimes. Thus, only two parameters remain to calibrate without affecting previous
calibrations. Our calibration of the PTW strength model of Be using flyer-plate data
will only optimize two parameters:y1 and y2. Calibrating these parameters will allow
Be’s PTW model to transition from “low" strain rates to “high" strain rates.

2.3 Optimization

In order to Optimize y1 and y2 for “high" strain rates they will be simulated and
there results will be compared to flyer-plate data. While current strength models are
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only calibrated using Hopkinson bar and quasi-static stress/strain data. Hopkinson
bar and quasi-static experiments provide experimental data with strain rates up to
several thousand per second. However, t his is considered to be in the “Low" strain
rate region, while we would like to calibrate the strength models at a higher strain
rate regimes. We begin our “High" strain rate PTW calibration from the parameter
settings determined by PTW calibrations with Hopkinson bar and quasi-static data
- these parameters should be a good default from which to start our optimization
procedure. These settings are listed in Section 2.1, Table 2-3 [5].

2.4 Simulation

Our simulations are done with advanced simulation and computation multi-physics
code developed at LANL. We simulate our flyer-plate experiment in one-dimension.
This is because it allows us to limit our analysis of the wave profile before the
reverberations and after peak velocity. These of which are produced by the wave
rebounding off the back and sides of the target. Because of this anything other
than one-dimensional calculations are unnecessary. Calculations from the “tracer", or
mesh zone, at the “rear" of the simulated target are recored. This would be similar
to VISAR data’s being taken from the backside of the target plate in a flyer-plate
experiment. We use either the boundary tracer or the tracer one cell internal to the
boundary, as sometimes boundary calculations can yield unexpected numerical issues.

Our shock simulations are inherently sensitive to artificial viscosity settings and
mesh zone size. Artificial viscosity is a technique to smooth a discontinuous shock with
an instantaneous jump in velocity over multiple grid cells to facilitate the computer’s
numerical calculation of simulation quantities. Increasing or decreasing artificial
viscosity behaves similarly to changing the material strength.

We also consider mesh size in our analysis. Using the GSA to optimize the
parameter space we ran the simulations at a resolution of 25 microns after doing an
informal convergence study that confirmed this resolution would be sufficient for initial
investigation. We later performed a formal convergence study on the parameters of
interest, y1 and y2, using the slope of the simulated plastic wave. See section 3.4 for
more information on the convergence study.

2.5 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) [8] is a heuristic optimization method
that has been developed to take into account Newtonian physics to optimize a
parameter space. This optimization technique uses a collection of particles that are
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interconnected by gravity, mass and the laws of motion to allow for the optimal
traversal of parameters through a given cost functions parameter space.

As stated in section 1.2 there are eleven parameters in the Yield stress, the two
parameters we are are looking at are the y1 and y2 parameters. After consulting with
Subject Matter Experts (SME) the bounds for each were between 0 and 4. The high
level explanation of this algorithm will be discussed in the next section while the use
of this optimizer in determining the optimal parameters for the PTW strength model
parameters will be discussed in section 4.

2.5.1 Algorithm

The GSA is a heuristic optimization algorithm that leverages the laws of Gravity,
Mass and Newtonian Physics to traverse a parameter space within some bounds to
allow for the convergence of agent particles, each of which represents a model with
some associated cost that we wish to minimize. The algorithm is as such [8]:

Assume you have a point (N) in a parameter space PS, the location of the point
can be represented as such Ni = [X1

i , X
2
i , ..., X

PS
i ]. Given a group of particles, or a

swarm, where N is now equal to the total number of the particles initialized and PS
represents the total number of dimensions the previously defined equations (Equation
3 and Equation 4) are used to generate how the particles interact. The Mass of a
particle is represented by

Costi =
1

F (Ni)
(3)

Massi =
Costi −Worse_Cost(N)

Best_Cost(N)−Worse_Cost(N)
(4)

Massi =
Massi∑N
j=0Massj

(5)

• F (Ni): The value of the cost function at the point of a given particle

• Worse_Cost(N): The point in the swarm with the ”Worse” cost

• Best_Cost(N): The point in the swarm with the ”Best” cost

– A minimization problem sets Best_Cost to the smallest cost in the swarm
and the Worse_Cost to the largest cost in the swarm

– A maximization problem sets Best_Cost to the largest cost in the swarm
and the Worse_cost to the smallest one in the swarm
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The agents need to move towards each other over time, thus we can state that at the
current time, T, the force of gravity on a single point (Fi(T )) is equal to the following
function:

Fi(T ) =
∑N

i=0j 6=i
Mi(T )∗Mj(T )

Ri,j(t)+ε
∗ (Nj(T )−Ni(T )) (6)

G(T ) = G0 ∗ e−α
t
T (7)

Fi(T ) = Fi(T ) ∗G(T ) ∗ rand[0,1] (8)

and the acceleration at time T is:

Ai(T ) =
Fi(T )
Mi(T )

(9)

To determine the new location of the particle we can state that its velocity is a
function of the newly calculated velocity and its current acceleration.

Vi(T + 1) = rand[0,1] ∗ Vi(T ) + Ai (10)

Now that a velocity is assigned to the particle, the new position is

Ni(T + 1) = Ni(T ) + Vi(T + 1) (11)

Our team has decided to use a Gravitational Search algorithm for the following
reasons:

1. have a better understanding of the overall parameter space

2. decrease the chance of converging at a local minimum

A key difference between GSA and a simpler optimizer, such as gradient descent,
is that the GSA has collaborative partners helping to search the overall parameter
space. A pitfall for gradient descent is that it can fall into a local minimum; the GSA
has a lower chance of falling into a local minimum because the other particles still
have a chance of falling into a lower minimum in the parameter space. From there it
can pull the other particle out towards the new minimum. This has a probability of
continuously happening, while it is impossible for the gradient descent to follow.

2.6 Parameter Study

To optimize the PTW parameters (y1 and y2) we created a script to submit a series
of jobs for a set of (y1 , y2) pairs, which would yield a corresponding simulation for
each pair. After the simulation was complete we would assign each pair a score. This
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score, (commonly known as a cost function) was given by the Root Mean Square
Error (RMSE) of the simulated data to the experimental data. The goal of the GSA
is to minimize the cost function; at each iteration, the particle with the lowest cost is
saved as the "global minimum". As the iterations progress and the particles move
around the parameter space, we hypothesize that we can find a y1 and y2 pair such
that the simulation best overlays the experimental data and produces a single point
in the parameter space that holds the optimal value.

We calculated the RMSE for each simulation in each iteration by extracting the
time at which peak velocity was reached in the experimental data and retaining only
the simulated and experimental data before this time. Our first RMSE calculation
also excluded times before the end of the elastic precursor, aiming to isolate fit to
the plastic wave, but we later decided to include all times from time zero to peak
velocity, as the “end" of the elastic precursor was a subjective measurement done
by eye, as opposed to the maximum velocity, which is unique. Thus, the RMSE
quantified the fit to both the elastic precursor and plastic wave, the former being
less obviously linked to strength; future work could investigate the sensitivity of the
elastic precursor to strength.

After subsetting the data, we then interpolated the simulation to have simulated
velocities at the experimental measurement times. We then found the difference in
simulated and real velocity at each of these times and calculated the root of the
squared distance. This procedure was done for each shot, which each had a different
time of peak velocity.

Our team ran the optimizer to explore the (y1 , y2) parameter space for each
shot separately. With this procedure, we hoped that the optimal pairs we found to
be optimal would be common among, and not unique to, each shot. The outcome
of all simulations sharing a common optimal set of parameter settings would imply
that Be’s strength model behaved similarly compared to different experiments, which
would be ideal, as we would like to build a model of Be’s behavior that is independent
of the experimental setup. As discussed in the Results section, we found consistent
behavior between the two shots (shot 55− 429 and 55− 430).
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3 Results

3.1 RMSE and Implications

After using the GSA to traverse the parameter space, we plotted the history of the
optimizer. This consists of every particles positional value in the parameter space
and its corresponding cost. Combining multiple swarms yields dozens of position/cost
pairs for each optimizer. We take these pairs and plot them in the parameter space
(seen in figure 1 and figure 2).

Figure 1: Shot55_429 Figure 2: shot55_430

These plots allow us to get a sense of the overall parameter space, and the
simulation’s sensitivity of the two parameters. In both plots, each point has a
different color, and position. The points color represents the RMSE (compared to
the real experimental data), and its position is the (Y1, Y2) parameter value for
the simulation. The red points indicate high RMSE and poor fit, while the blue
points indicates lower RMSE (and, usually, better fit). Upon reaching its maximum
iterations, each optimizer provided a global optimal point.

In figure 1 the best values identified by different GSA optimizers have been
highlighted. This shows that the optimizers does no find one global optimum; rather,
it settled inside an optimal region (highlighted pink). To better visualize this the
same points have been plotted in 3-D (figure 3) where the Y-axis is the cost.
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Figure 3: RMSE Plot shot55_429
RMSE graph

We can see that the sensitivity of the simulation to Y1 is very low. While Y2 is
very sensitive where the drop off is. The optimal parameters values for our simulation
can be found in the curve of the 3D plot at the trough (dark blue).

We hypothesized that there may be a global optimum somewhere within that
minimal region that could be found by traversing the subset of the parameter space
and increasing the simulation resolution.

Observing the logarithmic shape of the optimal region in the Y1, Y2 plain. We
ran a logarithmic regression on the optimal values to get a line of best fit. Then
generated Y1, Y2 points along that line of best fit and re-ran the simulation and
RMSE calculation for each of those points. We found that none of these RMSE scores
was significantly better than any of the others. We concluded there was no obvious,
defensible single optimum (Y1, Y2) pair, but many which provided a better fit to
experimental data at this resolution.

To choose one (Y1, Y2) pair from the multiple optimum values in the minimal
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region, we followed a common choice in the literature. For calibrations of strength
models for other materials, researchers would commonly set Y1 = S0 = 0.01142, a
parameter in τ̂Hy [9]. Fixing Y1 at this value, we could vary Y2 and find the minimal
point, likely where the Y 1 = S0 line crossed the minimal curve. For example, for
shot_429, we found Y1 = S0 = 0.01142, Y2 = 0.45 provided the smallest RMSE for
that fixed Y1 value at 25 micron resolution.

3.2 Drawbacks of RMSE

After exploring the parameter space and the simulation’s sensitivity based on RMSE,
we realized that the RMSE is a non-optimal metric. Our RMSE calculation does
not take into account measurement uncertainty and obscures the response of specific
simulation features to parameter perturbations. These measurement uncertainties
are shown below in figure 4, 5, 6 and 7.
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Figure 4: Shot55-429 error
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Figure 5: shot55-430 error
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Figure 6: Shot55-432 error
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Figure 7: shot55-433 error

Taking into account that our experimental data comes in a raw measurement
form that must be shifted in time by the impact time measurement, that of which
is taken separately during the experiment. We know that the experimental time
measurements exist in a range rather than at an exact point.

To better visualize this experimental data range we shifted each shot backward
and forwards in time by the amount of the impact time error and compare it to one
of the best simulations for that shot. We see changes in the RMSE value for that
simulation depending on the experimental data. Looking across all shots, we see an
improvement in RMSE as we shift the time measurements backward.
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Figure 8: Error for shots

Figure 8 shows the change in RMSE when Y1 is fixed and Y2 increases from
zero for each shot. Generally, the RMSE decreases as Y2 increases. The bands are
generated by creating the same RMSE curve for experimental data shifted backward
and forwards in time. Across all shots, shifting the data backward improves the fit to
simulation.

Our RMSE metric provides one number to approximate how well the simulation
matches the entire curve equally - the arrival, elastic precursor, plastic wave, all the
way to the target’s peak velocity. We may not care equally how the simulation fits
all points along the curve.

To remove this experimental uncertainty with respects to time we adjust our new
metric to be the comparison of the slope after the elastic precursor, up to the max
velocity of the simulation. This metric has the clearest interpretation in terms of
strength. Shallower if the material is “harder", steeper if it is “softer". We quantify
how much this feature in the simulation changes as our parameters change.

3.3 Slope and Experimental Uncertainty

Looking at the slope of the experimental and simulated data between the region after
the elastic precursor, up to the max velocity of the output is our new metric. This
new metric averts experimental uncertainty and allows us to compare the simulated
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data with the experimental data. This is because the slope of the plastic wave in the
experiment does not change as we shift the curve forwards and backward in time.

By sampling points in the center of this region, we can approximate the linear
slope of both the simulated and experimental plastic wave. In figures 9 and 10, we
filter the simulated data points to only those that fall within our designated region
and interpolate a line of best fit. From there we extract the slope of the line of best
fit.

These bounds are fixed even as the simulation changes, as they are based on the
experimental data and we want to compare the simulation as it reaches those velocities.
For example, for shot55 − 429, we kept simulation points where the velocity was
between 0.02 and 0.05 mm

us
. The plots below demonstrate our ability to approximate

the slope for different simulations, as well as our experimental data.

Figure 9: Shot55-429 25 micron
mesh Y2 = .02

Figure 10: shot55-429 25 micron
mesh Y2 = .95

3.4 Slope and Convergence

In an attempt to understand how the given Y1 and Y2 values affect our simulation
data, we plotted graphs of the Y1 and Y2 values increasing independently. As we
iterate over Y1 with Y2 being held constant (seen in the figure below) we observed
that the RMSE increases and then asymptotes. The opposite is observed for Y2 with
Y1 held constant.
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Even though the Y2 value is shown to be more sensitive to change and decreases
the RMSE, the fact that the data holds experimental uncertainty forces us to use a
different metric for assigning a cost for the parameter pair. As previously stated, the
metric we will move towards is the slope of the region after the elastic precursor, up
to the max velocity of the output.

Using this metric we increase the resolution of our simulation and see where the
experimental slope intercepts the simulated data. One example is shown below, For
a given zone size (25 microns), when Y1 = S0 and Y2 = .95 we can see that the slope
of the area of interest is about 1.19. However, if we keep the resolution and Y1 the
same but perturb Y2 we see the slope changes to about 5.3. If we continuously do
this at different resolutions the graph below is generated where the horizontal line is
the experimental slope.
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Figure 11: Convergence of shot55-429
at different resolutions

Figure 12: Interception of slope for
shot55-429 at different resolutions

If we cycle through the interpolated line and plot the point that passes the
experimental slope we can create a plot of “optimal" Y2 values for a given resolution.
From here we can extrapolate to the optimal Y2 for the smallest zone size. We
extrapolate the data from the lowest two-zone sizes and observe that the optimal Y2
would be .297 (rounded to the nearest thousandth); to test this new optimal we ran
two simulations, one at the optimal Y2 and another at a different Y2 to see how they
compare. As expected the optimal Y2 is visually the closest to the experimental data.

Figure 13: Extrapolated point for
0 micron resolutions
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4 Conclusions

4.1 Findings

Through this research, we find that there is not one optimal parameter set, but rather
many comparable choices for the parameters. Along the minimal curve shown in figure
3, there are a multitude of points that can be used as “optimal" points. However, if
we look at the data provided we have identified, a Y1, Y2 pair that improve the fit to
experimental flyer-plate data.

Furthermore, we found that the overall fit to high impact experimental simulations
that reach 106s−1 is less sensitive for Y1 but extremely sensitive to Y2. While we are
unsure which Y1, Y2 pair will retain as the default for the CMF, our recommendation
is Y1 = S0 and Y2 = 0.297. The simulation data at the default parameter and
the optimal parameter are shown below. As we can see for each of the shots our
parameters fit better than the default values.

Figure 14: Default simulation vs Optimal simulation
for shot55-429
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Figure 15: Default simulation vs Optimal simulation
for shot55-430

We learned that the metric of extracting and comparing the experimental and
simulated plastic wave slope avoids complications from measurement uncertainty, and
has a more useful physical interpretation than overall RMSE. The points used to
interpolate a line of best fit should be midway between the elastic precursor and the
highest velocity, or near the location where the concavity changes.

In terms of implications for modeling Be, we were surprised that Be’s strength
appears lower in this regime than was expected. From similar work with other
materials, we expected the strength to keep increasing with strain rate, as it does
for those other materials. Instead, the default parameter settings from previous
PTW calibrations used lower strain rate QS and HB data made Be too strong when
compared to FP data. The simulated wave had too shallow a slope, and changing Y1
and Y2 increased the slope ( decreasing the strength) to better fit the experimental
data.

4.2 Next Steps

To continue this work, future researchers should first redo the GSA optimization with
an improved cost function. It may be optimal to build a function that is a weighted
sum of RMSE and the difference in experimental slope. For example, given β1 and
β2:
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Cost = β1(RMSE) + β2(slopeexp − slopesim)2
This weighted sum would allow the researcher to increase β2 to emphasize fitting

the slope, but also retain the ability to optimize overall fit.
We also recommend creating a scatter plot of Y1, Y2, and slope differences that

classify points as falling within an acceptable bound of closeness to the experimental
slope, below the experimental slope, and above it. This coloring would help us identify
optimal regions within which to re-run the optimizer or to run a convergence study
within this optimal region.

Lastly, there are statistical methods that might inform a global calibration of all
PTW parameters using all available data [10]. While the parameters should have
sensitivities that vary based on the strain rate regime and the τ̂L parameters shouldn’t
affect FP fit, we have not varied them to confirm this. It would be interesting to vary
all 11 parameters using an experimental design to optimally explore the variability in
the parameter space to see which parameters truly are sensitive or insensitive for FP
data.
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